Das Solvay-Verfahren: Herstellung von Soda

FTCCT

Das Solvay-Verfahren (Ammoniak-Soda-Verfahren) dient der Herstellung von Soda (Natriumcarbonat, Na₂CO₃). Die weltweite Produktion beläuft sich auf 52 Millionen Tonnen, das entspricht jährlich 6,5 Kilogramm pro Kopf. Mindestens ¾ dieser Masse stammt aus dem Solvay-Verfahren, der Rest entfällt auf Abbau von Natriumcarbonat-Mineralien.

Überblick und Stoffbilanz

Der Prozess geht von den billigen und in großen Mengen vorhandenen Rohstoffen Kalk und Kochsalz aus:

Leider täuscht die Bruttogleichung einen einfachen Verlauf nur vor, denn das Gleichgewicht liegt weit auf der linken Seite. Wir erinnern uns an den **Soda-Auszug** des anorganisch-qualitativen Grundpraktikum: Damit die verschiedenen Metallkationen (Me^{x+}) nicht die Anionen-Nachweisen stören, wurde das zu analysierende Salzgemisch mit Soda gekocht. Dabei gingen die Anionen in Lösung, während die Metallkationen als schwerlösliche Carbonate (und Hydroxide, denn Na₂CO₃ ist alkalisch) im Rückstand verblieben. Im Auszug lagen die verschiedenen nachzuweisenden Anionen dann alle mit harmlosem Na⁺ als Gegenion vor:

$$\underbrace{\textit{MeX}_{2}}_{\textit{Salz}} + \underbrace{\textit{Na}_{2}\textit{CO}_{3}}_{\textit{Soda}} \rightarrow \underbrace{\textit{MeCO}_{3}}_{\textit{Rückstand}} + \underbrace{2 \textit{Na}^{+} + 2 \textit{X}^{-}}_{\textit{Auszug: in Lösung gegangen}}$$

Daran kann man erkennen, dass die Gleichgewichtslage auf der Seite der schwerlöslichen Carbonate (MeCO₃) liegt.

Zur Herstellung von Soda muss man sich deshalb eines komplexen Kreislaufprozesses bedienen.

Beschreibung des Einzelprozess

Reaktionsgleichung

- 1. Kalk wird gebrannt.
- 2.Um das CO₂ mit Na⁺ als Gegenion zu fixieren, wird es in alkalische Na⁺-haltige Lösung geleitet. Das wenig lösliche (96 g/L) NaHCO₃ fällt aus. In der Praxis nutzt man NH₃-gesättigte NaCl-Sole.
- 3. Nach seiner Abtrennung wird das Natriumhydrogencarbonat auf 200 °C erhitzt.
- 4. Mit dem Brandkalk aus (1.) wird das Ammoniumchlorid aus (2.) zu NH₃ regeneriert.

Summe (gekürzt):

Wozu braucht man so viel Soda?

• Bei der Herstellung von Normalglas (Kalk-Soda-Glas) wird ein Gemisch aus Soda und Kalk dem Quarzsand (SiO₂) zugesetzt und geschmolzen. Bei den hohen Temperaturen entstehen aus den Carbonaten dabei die Oxide (Na₂O) und (CaO). Im Glas (amorphe Schmelze von SiO₂) brechen Sie als Netzwerkwandler die Eckenverknüpfungen der SiO₄-Tetraeder auf und lassen so den Erweichungsund Schmelzpunkt senken. Das ist für Bearbeitungsmöglicheit sehr wichtig. Zur Wdh: Andere Netzwerkwandler wie B₂O₃ und Al₂O₃ erhöhen die Bruchsicherheit und verringern den thermischen Ausdehnungskoeffizent!

$$Na_2O$$
 + ... O — Si — O ... O ...

 Große Mengen an Soda werden benötigt, um Natriumpercarbonat herzustellen, das Bleichmittel in Vollwaschmittel. Bei Besprühen mit Wasserstoffperoxid (H₂O₂) wird dieses in die Struktur eingebaut (Anlagerungsverbindung, Addukt):

$$2Na_{2}CO_{3}+3H_{2}O_{2} \rightarrow 2Na_{2}CO_{3}\cdot 3H_{2}O_{2}$$

In der Wärme des Waschvorgangs zerfällt das H_2O_2 zum bleichend und entkeimend wirkenden O_2 .

 Soda dient beispielsweise auch als technisches Neutralisationsmittel und zur pH-Anhebung

