Einteilung der Enzyme in verschiedene Klassen

C3BL

Es lassen sich verschiedene Untergruppen an Enzymen unterscheiden, von denen hier einige vorgestellt sind. Die internationale Enzymkommission vergibt vierstelligen Enzyme Commissions Numbers (EC-Nummern).

Empfohlenes Lernvideo (ca. 11 min, Titel: "Arten von Enzymen -Hauptgruppen von Enzymen - Einteilung nach Reaktionstypen"), das alles im Schnelldurchgang wiederholt: https://youtu.be/LXizkwQMqu4

Oxidoreduktasen (Kürzel: EC 1.X.X.X.)

Zu den Oxidoreduktasen gehören Enzyme, die Substrate oxidieren oder reduzieren, also Redoxreaktionen katalysieren. Bei manchen Untergruppen dieser Klasse werden Redox-Cosubstrate (z.B. NADH oder NADP*) benötigt, ATP/ADP hingegen nicht.

- Oxidasen entziehen einem Substrat Elektronen und übertragen diese auf molekularen Sauerstoff (O2). Zusammen mit H⁺ entsteht daraus H₂O oder H₂O₂. Prinzip:
 - $2 R_{reduziert} + O_2 + 4 H^+ \rightarrow 2 R^{2+}_{oxidiert} + 2 H_2 O$ Die oxidierte Form (Roxidiert) ist nicht zwangsläufig positiv geladen Die Glucose-Oxidase (EC 1.1.3.4) ist ein Beispiel für ein wichtiges Enzym aus dieser Gruppe. Es katalysiert die Oxidation von Glucose wobei neben dem Oxidationsprodukt als Nebenprodukt auch H₂O₂ entsteht. Beim GOD-Test (Glucose-Oxidase-Test) wird das entstehende H₂O₂ als Cosubstrat für eine Peroxidase (z.B. Meerrettichperoxidase, EC 1.11.1.7). benötigt. Sie katalysiert die Bildung eines Farbstoffs (und H₂O). Der Farbstoff kann quantifiziert werden und ist letztendlich ein Maß dafür, wie viel Glucose in der Probelösung vorlag.
- Dehydrogenasen oxidieren ein Substratmolekül. Sie entziehen neben 2 Elektronen auch 2 H⁺. Da 2 H⁺ + 2 e⁻ = H₂ ist, entziehen sie formal also Wasserstoff (H2) (= Dehydrogenase)

$$RH_2 + NAD^+ \xrightarrow{Dehydrogenase} NADH/H^+ + R$$

Die Elektronen bzw. H⁺ werden dabei auf ein Cosubstrat, z.B. NAD⁺, übertragen.Es entstehen also Reduktionsäquivalente.

Transferasen (Kürzel: EC 2.X.X.X.)

Transferasen übertragen funktionelle Gruppen von einem Molekül (Donor) auf einen Akzeptormolekül. Prinzip: $A-X + B \rightarrow A + B-X$ In diesem Fall ist A der Donor und B der Akzeptor.

Bei den übertragenen Gruppen kann es sich beispielsweise um eine Phosphat- (="Pi", inorganic phosphate), Amino- oder Methylgruppen handeln. Transferasen für Phosphatgruppen werden Kinasen (EC: 2.7.X.X.) genannt. Als Phosphat-Donor fungiert dann meist das Cosubstrat Adenosintriphosphat (ATP). Durch die Übertragung von P_i entsteht dabei **Adenosindiphosphat (ADP)**.

Ein sehr wichtiges Enzym, das zu den Kinasen gehört ist die Phosphofructokinase (EC: 2.7.1.11). Dieses Schlüsselenzym des Glucose-Stoffwechsels katalysiert innerhalb der Glykolyse folgende Reaktion:

$$Fructose-6-P+ATP \xrightarrow{Phosphofructokinase} Fructose-1, 6-Diphosphat+ADP$$

Auch DNA- und RNA-Polymerasen, wie sie z.B. bei der PCR-Technik eingesetzt werden, gehören zu dieser Klasse. Sie sind für das Anhängen von Nucleotiden bei der RNA bzw. Desoxynucleotiden bei der DNA zuständig, also für die Kettenverlängerung. Als Cosustrate nutzt die RNA-Polymerase GTP, ATP, CTP oder UTP. Diese enthalten alle Ribose als Zucker enthalten. Die DNA-Polymerase nutzt die Varianten mit Desoxyribose als Zucker.

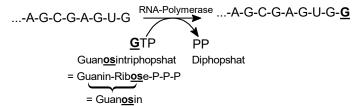


Abb. 1: Schema für das Anhängen eines Nucleosids an einen RNA-Strang. Bsp. hier: GTP Vs. 2025-10-15 S. 2

Hydrolasen (Kürzel: EC 3.X.X.X.)

Wie der Name schon andeutet, <u>spalten</u> Hydrolasen Bindungen *hydrolytisch*, also unter dem Einfluss von Wasser. Dabei wird auch das Wassermolekül gespalten: X-Y + HOH → X-OH + + H-Y. Zu dieser Gruppe die meisten spaltenden Enzyme: Peptidasen, Proteasen, Lipasen, Nucleasen (z.B. Restriktionsenzyme) Amylasen, Esterasen (z.B. Acetylchlorinesterase), β-Lactamasen

- α-Amylase (EC 3.2.1.1.) spaltet die 1,4-Glykosidbindungen der Amylose, einem Stärkebestandteil. Dadurch entstehen Dextrine, Maltose und Glucose. Invertase spaltet Saccharose in die beiden Monosaccharide.
- Die Untergruppe der **Peptidasen** spalten die Peptidgruppen in Oligo- oder Polypeptiden und Proteinen. Dazu gehören z.B. die Enzyme Trypsin, Chymotrypsin und Pepsin. Spalten sie eine AS-Kette an den Rändern, spricht man von einer Exopeptidase, wird im Inneren des Strangs gespalten, handelt es sich um eine Endopeptidase.
- Die Untergruppe der Esterasen spalten Estergruppen, meist Carbonsäureester in Alkohole und Carbonsäuren.
- Zu den Nucleasen werden alle Enzyme gezählt, die Nucleinsäuren hydrolytisch spalten. Zwei Untergruppen der Nucleasen sind die Desoxyribonucleasen (DNAsen, spalten DNA-Moleküle) und die Ribonucleasen (RNAsen, spalten RNA-Moleküle).
 Zu den Nucleasen gehören auch die sogenannten Restriktionsendonucleasen (kurz: Restriktionsenzyme). Sie schneiden DNA im Inneren des Strangs an speziellen Erkennungssequenzen.
- Auch die **β-Lactamasen**, die den Lactam-Ring von Lactam-Antibiotika spalten und von Bakterien als Abwehrwaffen gegen entsprechende Antibiotika gebildet werden, gehören zur Gruppe der Hydrolasen.

Lyasen (Kürzel: EC 4.X.X.X.)

Lyasen sind Enzyme die Bindungsspaltungen oder die entsprechende Rückreaktion katalysieren, wobei es sich jedoch <u>nicht</u> um eine Hydrolyse oder eine oxidative Spaltung handelt. Die Summe aller OZ als C-Atome verändert sich nicht. Wird durch eine Lyase eine Einfachbindung in einem Molekül gespalten, so entstehen aus dem Substratmolekül zwei getrennte Fragmente. In der Regel geht die enzymatische Reaktion bei Lyasen mit der Veränderung der Anzahl an Doppelbindungen einher. ATP/ADP ist nicht beteiligt.

1. Zeigen Sie, dass sich die Gesamt-OZ (OZ-Summe) für die C-Atome nicht ändert!

Aber auch Enzyme die die entsprechende Rückreaktionen katalysieren, werden Lyasen genannt. Häufig kann ein und dasselbe Enzym sogar die Spaltung und die Synthese katalysieren (vgl. z.B. Fumarase)

Isomerasen (Kürzel: EC 5.X.X.X.)

Sie katalysieren Isomerisierungen, z.B. intramolekulare Verschiebungen von funktionellen Gruppen.

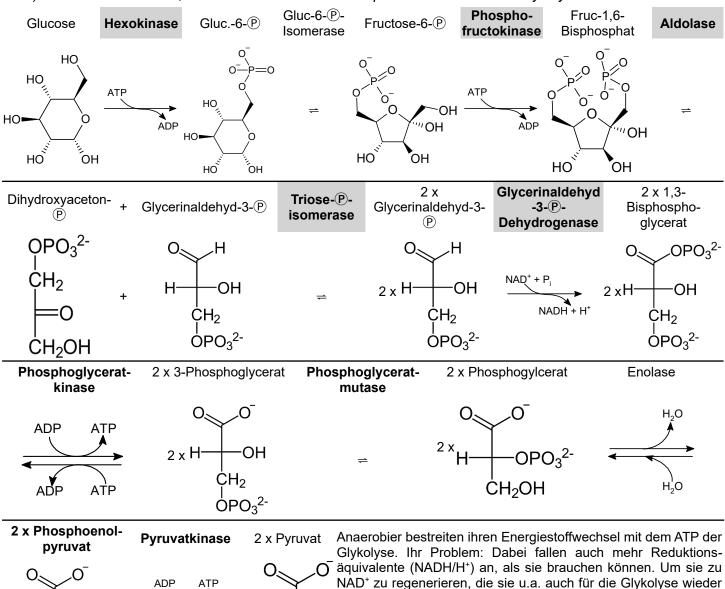
Ligasen (Kürzel: EC 6.X.X.X.)

Hierbei handelt es sich um Enzyme, die zwei Moleküle **unter ATP-Verbrauch (oder GTP-Verbrauch)** zu einem größeren Molekül verknüpfen.

Besonders wichtig sind **DNA-Ligasen**, die Nucleotide über Ausbildung von Phosphorsäureestern verknüpfen. So können 2 DNA-Stränge zu einem längeren DNA-Strang verknüpft werden.

Translokasen (Kürzel: EC 7.X.X)

Diese Klasse beinhaltet Enzyme, die für den *passiven* oder *aktiven* Transport von Stoffen durch eine Zellmembran hindurch verantwortlich sind (**Translokation**). Prinzip: $X_{OrtA} \rightarrow X_{OrtB}$


Wenn die Energie für einen aktiven Transport aus der hydrolytischen ATP-Spaltung (Prinzip: ATP + H_2O + $X_{OrtA} \rightarrow$ ADP + P + X_{OrtB}) stammt, wurden diese Enzyme früher häufig der Gruppe der Hydrolasen (EC 3.X.X.) zugerechnet. Da hier jedoch nicht die Hydrolyse selbst die Hauptfunktion ist, sondern der Transportvorgang an sich, werden sie besser in diese neue Gruppe der Translokasen einsortiert. Weiterhin sind hier auch andere Transportproteine zu finden, die im Rahmen eins Cotransports auch andere Stoffe als Cosubstrate nutzen.

Vs. 2025-10-15 S. 3

2. Übungsaufgabe: Stoffwechselweg der Glykolyse (muss man nicht auswendig können!)

Die Glykolyse ist einer der wenigen Stoffwechselwege, den fast alle Organismen (ALLE Eukaryoten, die meisten Prokaryoten) gemeinsam haben, was auf eine sehr frühe Entstehung hinweist.

- a) Geben Sie zur Übung zu jedem Enzym der Glykolyse die Enzymklasse an.
- b) Geben Sie zu jedem Substratmolekül die Anzahl der C-Atome an (z.B.: 5 C-Atome im Molekül: C5).
- c) Bilden Sie die Stoff-, ATP- und eine Reduktionsäquivalenten-Bilanz der Glykolyse.

brauchen, haben sie verschiedene Strategien entwickelt: Beispielsweise reduzieren Milchsäure-Gärer mit NADH/H $^+$ das andere Endprodukt der Glykolyse, das Pyruvat, zu Milchsäure: $H_3C-C(O)-COO^- + NADH/H^+ \rightarrow H_3C-CH(OH)-COO^- + NAD^+$.