Durchflusscytometrie (Flow cytometry)

C3BL

Bei der **Durchflusszytometrie** handelt es sich um verschiedene Messverfahren mit dem Zellen oder viele andere Arten von Partikeln (z.B. analysiert werden, die im hohem Tempo <u>einzeln</u> an einer elektrischen Spannung oder einem Lichtstrahl vorbeifließen. Je nach Form, Struktur und/oder Färbung der Zellen werden unterschiedliche Effekte erzeugt, aus denen die Eigenschaften der Zelle abgeleitet werden können: So können beispielsweise bestimmte Zellarten eines Zellgemisches, die sich optisch unter einem gewöhnlichen Mikroskop nicht unterscheiden lassen, mit

den passenden fluoreszenzmarkierten Antikörpern gebunden werden und daraufhin je nach Fluoreszenzfarbe in unterschiedliche Reagenzgefäße sortiert werden. Entsprechende Geräte werden als flow sorter (auf deutsch: Fluss-Sortierer) oder als FACS (=fluorescence-activated cell sorting) bezeichnet. Die Abkürzung FACS wird aber auch für eine andere Durchflusscytometrie-Methode genutzt, bei der keine Zellsortierung, sondern "nur" eine Zellanalyse durchgeführt wird (=fluorescence-activated cell scanning, "FACS")

1. Prinzip und optisches Systen

Durch einen Hüllstrom fokussiert, tritt die Probe in eine Quarzküvette ein, so dass jede Zelle einzeln nacheinander durch einen Laserstrahls geführt wird. Das dabei entstehende Streulicht und/oder die Fluoreszenzsignal(e) werden von Detektoren erfasst. Das Ergebnis sind quantitative Informationen über jede einzelne analysierte Zelle (Event). Durch die Analyse einer großen Anzahl von Zellen innerhalb eines sehr kurzen Zeitintervalls (bis 35000 Zellen/sec!) erhält man schnell repräsentative Informationen über Zellpopulationen.

Die Menge des gestreuten Lichts korreliert mit der Größe der Zelle und mit ihrer Komplexität. So streuen *Granulozyten*, die eine raue Oberfläche und in ihrem Inneren viele Vesikel haben, deutlich mehr Licht als die glatten *T-Zellen*. Das **Vorwärtsstreulicht (FSC = Forwardscatter)** ist ein Maß für die Beugung des Lichts im flachen Winkel und hängt vom Volumen oder der Größe der Zelle ab. Das

Seitwärtsstreulicht (SSC = Sidescatter) ist ein Maß für die Brechung des Lichts im rechten Winkel, die von der Granularität der Zelle, der Größe und Struktur ihres Zellkerns und der Menge der Vesikel in einer Zelle beeinflusst wird. Mit diesen beiden Parametern lassen sich beispielsweise die Blutzellen gut unterscheiden.

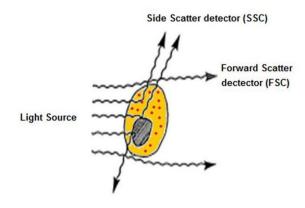


Abb. 1.1: Forward- und Sidescatter (Q: 2010.ige.org; Autor: Krystal; CC)

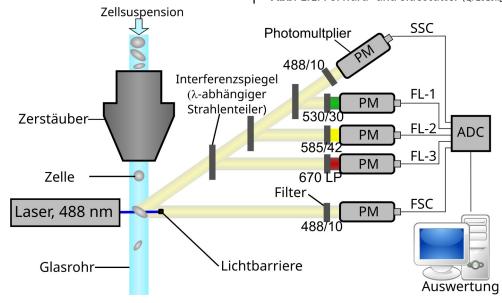
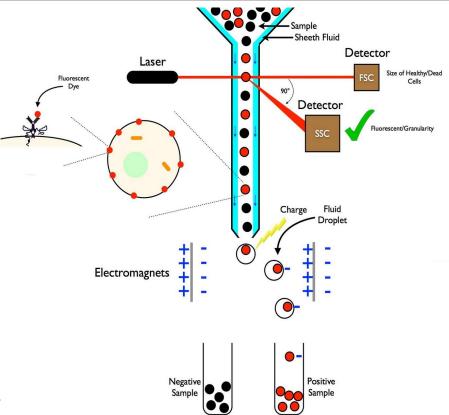


Abb. 1.2 Optisches System eines 5-Kanal-Durchflusscytometers (Q: wikicommons A: Kierona, verändert)

s: 2	025	-08-0)/																																2
1.									_																								<u>Hin</u>		
																																	tricl		
																															_		sen steh		
				nzk		-	133]1	itei	, uc	ı u	us	ges	um	ie i	LICII	ı oı	Jen	IGID	ue	ı uı	ige;	360	CHE	.11 V	VCII	CIII	ang	c u	urc	mus		1 L	31611	11 11	11
						,																													
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•		•									•	•	•	•	•					•	•	•		•	•	•					•	•	•
				•										•	•	•	•						•	•		•	•							•	
															•								•					•					•		
				•											•	•	•						•			•	•						•	•	
															•											•									
•															•											•								•	•
														•	•							•	•					•					•		•
															•								•												
				•											•	•	•										•						•		
							•								•			•	•				•			•									
							•								•			•	•				•			•									
																							•	•											
															•								•												
															•																		•		•
															•								•												
															•							•	•												
				•												•	•					•	•			•	•							•	
				•												•	•			•						•	•			•				•	

Vs: 2025-08-07


2. Zellsorter. Fluorescence-activated cell sorting (FACS)

Ein FACS-Gerät besitzt nach den Fluoreszenzdetektoren zusätzlich einen Vibrationseinheit zur Unterteilung des Flüssigkeitsstroms in kleine Tröpfchen (hydrodynamische Fokussierung) und einen elektrostatischen Sortiermechanismus. Die Tröpfchengröße ist so gewählt, dass nur wenig mehr als eine Zelle hineinpasst, was zu einer Vereinzelung führt.

Wenn der Detektor die Zielzelle erfasst, sorgt nach einer (bei der Kalibrierung einzustellenden) Verzögerungszeit eine ringförmige Elektrode dafür, dass das Tröpfchen, indem sich die Zelle aufhält, elektrisch geladen wird. Diese Stelle ist in der Abb. mit "Charge" markiert. In einem elektrischen Feld werden die Flüssigkeitströpfchen je nach dann Ladung unterschiedlich abgelenkt.

Auch die Sortierung in vier Zielfraktionen ist mittlerweile möglich.

Abb. 2.1: Aufbau eines Zellsorters. (Quelle: commons.wikimedia.org; Autor: Sari Sabban, CC, PhD thesis)

3. Messkriterien/Sortierkriterien

Mit der Durchflusscytometrie kann eine Zellzählung oder Zellsortierung mit einem oder mehreren Kriterien erfolgen:

- Zellvolumen, Zellform, morphologische Merkmale
- Ausmaß der Adhärenz von Zellen untereinander (Verknüpfung von 2 oder mehr Zellen)
- Gesamt-DNA- und/oder RNA-Gehalt der Zellen (mit interkalierenden Fluoreszenzfarbstoffen)
- Chromosomeneigenschaften (z.B. über Anfärbung)
- Zellpigmentierung, z.B. Chlorophyll-Gehalt
- Antigenausstattung auf Zelloberflächen (z.B. Zelloberflächenproteine, Rezeptoren)
- Intrazelluläre Stoffe (z.B. pH-Wert, Ca²⁺-Gehalt, Cytokingehalt), z.B. mithilfe färbender Reagenzen
- Separierung transgener von nativer Zellen (z.B. über Expression von GFP).
- Separierung anhand der Geschlechtschromosomen: X-Spermien und Y-Spermien und damit

- Bestimmung des Geschlechts des Embryos . In der Humanmedizin in der BRD verboten.
- Trennung von lebenden und toten Zellen. Man inkubiert die Zellgruppe mit Farbstoffen, die nur von toten Zellen (wegen der erhöhten Durchlässigkeit der Zellmembran) oder nur von lebenden Zellen aktiv endocytiert werden kann. Mithilfe der unterschiedlichen Färbung ist dann eine Zellsortierung/Zellzählung möglich. vgl. z.B. Abb. 5.1 (unten).
- In der Lebensmittelanalytik kann die Durchflusszytometrie für die Bestimmung der (Lebend-)-Keimzahl (z.B. in Rohmilch) eingesetzt werden, auch in der betrieblichen Endproduktkontrolle. Beispiel: UHT-Milch (H-Milch)

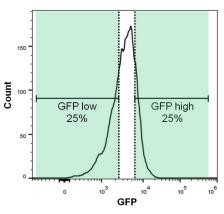
Vs: 2025-08-07 4

4. Darstellung der Ergebnisse und Gating

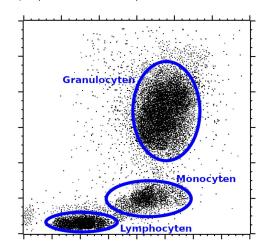
Während der Messung werden die Daten in eine riesige, aber einfach gebaute tabellarische Datei geschrieben. Für jedes **Event (Zählereignis)** sind die Werte in einer Zeile angegeben. Hier ein Ausschnitt der ersten 10 Datenzeilen eines Cytometers mit 3 Streulicht- und 13 Fluoreszenz-Kanälen (*nachzählen!*) erstellt wurde Q: wikicommons. A: K:

	FSC-A	FSC-H	SSC-A	B515-A	R780-A	R710-A	R660-A	V800-A	V655-A	V585-A V450-A	G780-A	G710-A	G660-A	G610-A	G560-A
[1,]	27700.75	27291.75	177.52585	1984.485	625.0796	1232.1008	748.5101	1553.0295	1350.2565	3175.717 2338.1038	2286.1709	1758.4244	2550.914	1862.9843 19	972.4854
[2,]	41264.25	39764.25	320.12296	3639.620	539.7032	1433.3112	1470.2659	2217.6750	2305.3516	5683.995 4767.4976	2617.9441	2063.0974	3401.507	2471.2236 22	268.8318
[3,]	65054.75	57606.25	203.01607	2191.861	198.6541	726.9798	766.2198	802.2521	809.9579	1763.534 2870.2039	721.3581	750.2025	1156.660	879.6395 8	302.7821
[4,]	30584.00	31664.50	130.68690	1873.409	1304.0895	2528.7083	784.6980	1702.3671	1185.8608	2063.256 1839.7687	3945.7107	2480.2170	2585.438	1850.5399 27	768.8843
[5,]	39505.75	39626.00	203.25166	2540.620	323.2625	857.1525	715.0004	1117.4775	1746.5798	3810.514 3442.1965	1766.7188	1595.8044	2746.546	2118.4902 15	60.5364
[6,]	33171.50	34794.00	333.64246	2192.864	1408.8563	2573.5095	1604.2236	2128.1748	1727.5891	3734.910 2551.4509	5498.1421	2989.3887	3295.179	2938.3291 46	63.7070
[7,]	63711.00	54475.50	1122.48340	3879.044	1730.8085	3573.5652	1691.8744	5106.0596	3578.0332	9183.305 7264.9624	7268.8550	4263.6313	4767.073	4025.7312 57	758.2100
[8,]	40000.75	40213.50	236.54262	2545.858	1081.6753	2313.5962	1411.0983	2989.7524	1920.4047	4386.833 3081.640	3615.0461	2552.7622	3304.552	2666.3101 35	32.8064
[9,]	49286.00	49182.50	78.61845	1601.092	123.2834	493.6364	242.0255	633.3533	759.2227	1920.717 2082.5884	996.4465	805.6166	1197.744	957.8304 9	937.6376
[10,]	32209.75	33368.25	203.29897	2387.361	1056.0723	1769.4005	939.7758	1693.8635	1579.7000	3308.004 2106.1416	2835.7053	2057.3567	2653.473	1879.0623 23	306.1431
[1 1 1	25027 25	20212 50	220 66500	2001 FO1	1210 1205	2202 2052	1000 7004	2442 0205	2252 0146	4004 210 2004 072	EFOS FASE	2702 6475	1022 212	2111 4420 44	176 1666

Gating: Die gesamte Datei besitzt bis zu hunderttausenden solcher Zeilen. Für die visuellen Darstellungen werden nur die jeweils relevanten Daten herangezogen. Das systematische Auswählen der Daten/Messsignale mithilfe von Datenfiltern wird als Gating (engl. "gate" = Tor) bezeichnet. So kann man beispielsweise zuerst die Events mit einer Mindest-Zellgröße selektieren. Anschließend kann man dann aus dieser Untergruppe noch mal die Zellen auswählen, deren Fluoreszenz-Signal innerhalb eines bestimmten Fensters liegt. Für das Selektieren der Zellen, mit deren Daten man weite arbeiten, d.h. weiter filtern will, nutzt man bereits einfache graphische Darstellungen. So kann man sich beispielsweise anhand einer Darstellung wie in Abb. 4.2 (siehe rechts) die Granulocyten selektieren und dann von diesen Zellen dann die Werte der anderen Kanäle visuell anzeigen lassen.


Histogramme sind Häufigkeitsdiagramme. Sie geben die Häufigkeit auf der y-Achse gegen die Signalstärke auf der x-Achse, meist logarithmisch aufgetragen, an. In der einfachen Form geben sie somit die Messergebnisse nur eines Kanals wieder. Das Histogramm in Abb 4.1 (siehe rechts) zeigt beispielsweise die Häufigkeit der Events mit bestimmtem GFP-Fluoreszenzsignal.

In **Streudiagrammen (scatter plot)** wird jede Zelle in Abhängigkeiten von zwei Eigenschaften als Punkt dargestellt. Auch hier kann man mit Gating Vorauswahlen in der Darstellung treffen und nicht-interessierende Zellen schrittweise herausfiltern.


Aufgabe 4.1 Beschriften Sie die beiden Achsen des Streudiagramms in Abb. 4.2 mit SSC und FSC!.

Wenn viele Punkte ähnliche Signale liefern, können in Streudiagrammen schwarze Fläche entstehen und Punkte übereinander liegen. Die Größe von Zellpopulation kann dann nicht visuell eingeschätzt werden. Hier behilft man sich mit einer dritten Dimension:

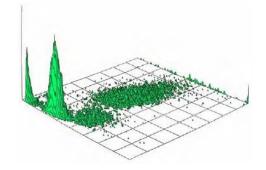

- Farbcodierungen, die von der Zellzahl abhängt (vgl. Abb. 4.4 und Abb. 4.7)
- Dritten Achse, die die Zellzahl oder ein anderen Parameter wiedergibt. vgl. Abb. 4.3.

Abb 4.1: Histogramm. Quelle: https://doi.org/10.7554/eLife.-17290.003, CC (Rowena DeJesus et. al)

Abb. 4.2: Streudiagramm von Leukocyten. Granulocyten besitzen große Mengen intrazellulärer Einschlüsse. Monocyten sind relativ große Blutzellen. Quelle: e.W.

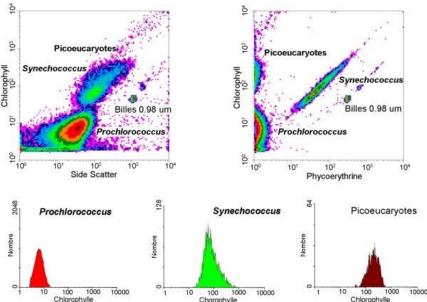


Abb. 4.3: 3D-Histogramm einer Zellpopulation. q: wikicommons

Abb. 4.4 zeigt eine Pico-Planktonprobe mit 3 verschiedenen Einzeller-Gattungen. Die spezielle Form der Streudiagramme wird auch Konturplot genannt. Die Unterschiede erklären sich durch unterschiedliches Gating, das auch mit unterschiedlichen Kanälen zusammen hängt. "Billes" = Fragmente.

Die drei Histogramme unten nutzen nur den Kanal, der die Chlorophyll-Farbintensität gemessen hat. Die drei Einzellergattungen unterscheiden sich im Chlorophyllgehalt.

- Abb. 4.5 zeigt ein Beispiel mit AKgekoppelten Fluorochromen. Die Zellen
 eines Zellgemisches können den Rezeptor
 1 und/oder Rezeptor 2 besitzen. Gegen die
 Rezeptoren wurden Antikörper entwickelt
 und mit unterschiedlichen Fluoreszenzfarbstoffen markiert. Die Rezeptoren wirken
 also als Antigene. Das Zellgemisch wurde
 anschließend mit dem Antikörpergemisch
 behandelt. Mit dem Durchflusscytometer
 wurden mit zwei Fluoreszenzkanälen die
 Signale gemessen:
- a) Das erste Bild zeigt eine Zelle die Ag1positiv und Ag2-negativ ist. Bei Anregung durch den Laser wird ein grünes Fluoreszenzlicht emitiert, dass aufgrund der Filter nur Kanal FL-1 gemessen wird.
- b) Das zweite Bild zeigt eine Zelle die sowohl Ag1- als auch Ag2-positiv ist. Die beiden Fluoreszenzsignale werden durch die jeweiligen Kanäle registriert.
- **Abb. 4.6** zeigt den Konturplot mit FL1- und FL2-Signalen. Die Cluster zeigen, dass es vier unterscheidbaren Fälle gibt.
- Aufgabe 4.2: a) Beschriften Sie in Abb. 4.6 die Achsen mit log Ag1 und log Ag2. Nutzen Sie dabei Informationen aus Abb. 4.7 auf der nächsten Seite.
- b) Geben Sie für alle Quadranten an: "Ag1 positiv, Ag2 negativ" o.ä.

Abb. 4.4: Graphische Darstellungen aus den Messwerten einer Picoplankton-Probe. Quelle: de.wikipedia.org. Daniel Vaulot

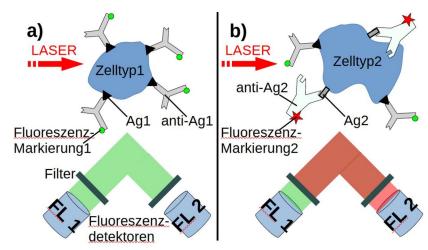


Abb. 4.5 Prinzip der Zweikanalmessung. Quelle: e.W.

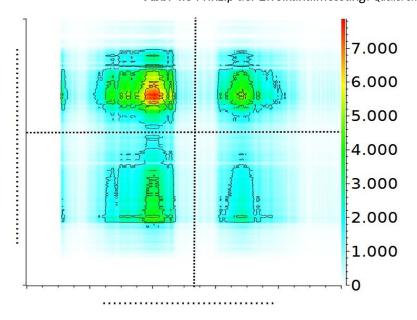
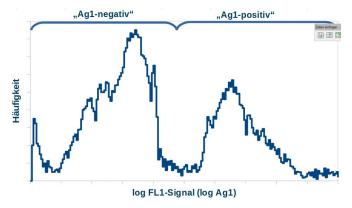



Abb. 4.6: Konturplot. Quelle: eigenes Werk

Vs: 2025-08-07

Iog FL2 -Signal (log Ag2)

Abb. 4.7: Histogramme der beiden Kanäle Quelle: e. W. Auch in ihrer Gesamtheit besitzen die beiden Histogramme weniger Informationsgehalt als der Konturplot aus Abb. 4.6. Die Zuordnung beider Signale für jedes Einzel-Event ist nicht entnehmbar: Ob beispielsweise ein Ag1-positives Event auch Ag2-positiv ist, ist nicht zu bestimmen.

Hervorragendes Lernvideo (8:41 min), dass das Wissen abrundet und nochmal zusammenfasst.

https://youtu.be/haTSQ7-ZPPk

5. Letzte Bemerkungen und Nano-Bilder-Atlas

- Typische Durchflusscytometer können nicht nur Zellen vermessen, sondern auch Beads. So können Sie auch für die Auswertung von *Particle Immunassays (PIA)* genutzt werden.
- [Stand: 2024]: Moderne Durchflusscytometer haben auch mehrere verschiedene Anregungslaser, z.B. fünf. Die Anzahl der Kanäle nimmt immer weiter zu, typischerweise sind es deutlich über zehn. Auch eine parallele Sortierung in mehrere Gefäße ist möglich, z,B, 4 Gefäße.

•